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If our software is going to be widely used,
we must meet the expectations of the current
user community. Such a user is typically inter-
ested in visualizing and investigating interest-
ing properties of the approximate solutions to
mathematical models that arise as systems of
differential equations (either ODEs or PDESs).
They are likely to be working in a PSE with a
choice of methods available. The implications
for developers of numerical software include:

e Adopt a standard interpretation of error
control, and a standard program interface
(calling sequence) for methods that per-
form the same or similar tasks.

e Options and additional parameters (if re-
quired) are specified in the same way for all
methods. This includes stepsize or mesh
constraints and accuracy specification.

e Adopt a standard representation of the
approximate solution. (eg., a vector of
piecewise polynomials.)



In the first part of this presentation, we will fo-
cus on ODEs where a new generation of soft-
ware has been developed and is widely avail-
able. We will then describe specific develop-
ments related to PDE software and its use. In
particular we will survey recent developments
in the implementation of fast and reliable tech-
niques for generating surface plots and contour
curves associated with a coarse-mesh approx-
iImate solution on an unstructured adaptively-
chosen mesnh.



Part I — ODEs:

The Evolution of ODE software.

e Standard Discrete ODE Methods
(with maximum stepsize, h ):

N
{zi,yitito, maxly(z;) — yil = O(hP).

e Add continuous extension, S(z),
(for visualization):

S(zi) =y, [IS(@) —y(@)|| = O(rP).

e Add direct defect error control
(to obtain generic convergence result):

1S'(z) — f(z,S(z))|| < TOL,
1S(z) —y(z)|] < K1TOL
1S'(z) — ¢/ (z)|| < KoTOL.




Consider a typical application of the use of an
IV method in a PSE.

A predator-prey relationship can be modeled
by the well-known IVP:

/
y1 = y1 — 0.1y1yo + 0.02x

/
y> = —yo + 0.02y1y> + 0.008zx
with
y1(0) = 30, y2(0) = 20,

where y1(x) represents the ‘prey’ population
at time x and y>(x) represents the ‘predator’
population at time .



We know that solutions to this problem exhibit
oscillatory behaviour as x increases. A Dbiolo-
gist may be interested in whether the solutions
to this equation are ‘almost periodic’ (in the
sense that the difference between successive
maximum is constant) and whether the local
maximums approach a steady state exponen-
tially.
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A) Visualizing Using a Discrete Solution:
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B) Visualizing Using Splines:
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C) Visualizing Using a CRK formula, S(x):
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Consider approximate solutions to this problem
with an 8th order CRK method and the built-
in MATLAB method, ode45. Visualizing using
the piecewise polynomial representation of the
corresponding approximate solutions we have:




An Essential Requirement:

e When applied to the IVP:
/
y = f(z,y), y(a) = yo, On |[a,b],

with a specified accuracy, TOL, the method
generates a piecewise polynomial, S(x), de-
fined for x € [a,b] satisfying,

15(z) —y(z)|| < KpyTOL.

Note that K,; can depend on the method
and the problem and is the ‘numerical con-
dition number’ associated with method M.

e With the right choice of error and stepsize
control (For example, direct defect con-
trol) we can ensure that K, will be almost
independent of the method. The associ-
ated defect is defined to be

6(z) = 5'(z) — f(z, 5()).
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Let z;(x) be the solution of the local IVP on
step 2. We identify 3 types of continuous ex-
tensions of a pt"- order discrete RK formula,
for x € [x;_1,x;]:
S(x) = z;(x) + O(hP): with,

5(z) = d(f)RP~1 4+ O(hP),

where d(f) depends on the problem and
the method.

S(z) = z;(z) + O(RPT1): with,
5(z) = d(fIRP + O(RPTY),

where d(f) depends on the problem and
the method.

S(z) = z;(z) + O(hPT1): with,
5(z) = dn? 4+ O(hPTh),

where d depends only on the problem.
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Error and Stepsize Control

With these continuous extensions one can mon-
itor the magnitude of the defect associated
with each step and accept the step only if an
estimate of this quantity is less than the error
tolerance, TOL.

‘Direct’ defect control refers to error control
strategies that attempt to correctly estimate
the leading term in the expansion of the de-
fect. In particular methods that use direct de-
fect control cannot employ local extrapolation,
either to estimate the magnitude of the defect
or improve the accuracy of the accepted solu-
tion.

Note that with direct defect control, one can
derive estimates of §(x), d(x) that are reliable
on each step ‘with high probability’ and esti-
mates of §(z) that are reliable (asymptotically
justified) for all steps.
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With direct defect control one can prove the
desired convergence result:

15(z) —y(z)|| < KpyTOL,
where Kj; depends primarily on the problem.

We have developed a family of IVP, BVP and
DDE methods based on this approach. These
methods provide, as an option to the user, the
choice of either a continuous extension of the
type S(x) or the more reliable but more ex-
pensive S(z). DDVERK is the DDE method
of this family and is available through NETLIB.
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The following table identifies the number of
stages required for the different types of con-
tinuous extensions. In this table, s is the num-
ber of stages necessary to determine S(x); s is
the number of stages necessary to determine
S(x); and 5 is the number of stages necessary
to determine S(z).

Note that this table applies to all ODE meth-
ods as it identifies the ‘cost’ of forming the
underlying interpolant and the associated di-
rect defect.

~

Formula | p S S S
CRK4 4| 4| 6| 7
CRK5 51 7| 9|11
CvsSseB |6 | 9|11 | 14
CVSS7 7|11 15| 20
CVSSS8 8|15 |21 | 28
ode45 51 7] 9|11

Table 1: Cost per step of some CRK Methods
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Three Versions of ode4s:

We have modified the MATLAB method ode45
sO the user can select one of three error control
strategies:

eropt = I: Indirect local control— using S(x).
This gives the identical results that the
built-in routine provides.

eropt = II: Direct defect control — using S(z).
The error estimate is based on a sampled
evaluation of the defect and has a high
probability of being reliable.

eropt = III: Strict direct defect control — us-
ing S(z). The leading term in the expan-
sion of this defect is reliably estimated.

There is clearly a cost/reliability trade off to
be considered when selecting the error control
option for a particular application.
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We report the following statistics for the Preda-
tor - Prey investigation for the 3 versions of
ode4h:

steps The number of time steps.
fcn: The number of derivative evaluations.

ger: The maximum magnitude of the error in
the solution, measured in units of TOL.

vmerr: The maximum magnitude of the er-
ror in the identified local maximums (of
the prey population), measured in units of
TOL.

experr: The error in the reported value of the
‘best’ exponential fit to the decay exhibited
by the mathematical model, measured in
units of TOL.

R(res): Best least square fit and residual for
determining whether the prey population is
almost periodic.
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ero TOL 10—~ 10~4 10~°
I steps 71 148 367
fcn 511 961 2239

ger 30. 8.3 3.9

ymerr 12. 1.1 2.2
experr 24 .8 2.9 5.6
R(res) 6.43 (.4) | 6.37 (.05) | 6.37 (.05)

II steps 92 184 397
fcn 921 1769 3385

ger 4.1 2.3 4.3

ymerr .70 1.1 3.5
experr 2.2 1.7 5.4
R(res) | 6.36 (.07) | 6.37 (.05) | 6.37 (.05)

ITI steps 92 185 408
fcn 1171 2131 4441

ger 1.5 1.7 2.6

vmerr .78 .82 2.2
experr 2.7 1.7 3.7
R(res) | 6.36 (.06) | 6.37 (.05) | 6.37 (.05)

Table 2: Results for the 3 versions of ode45
on the Predator-Prey investigation
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Extension to PDEs:

We have extended this approach for visualiza-
tion and the investigation of interesting prop-
erties of the numerical solution to PDEs. In
this case, the piecewise interpolant of the dis-
crete numerical solution, is a multivariate poly-
nomial, S(x,y). (Note that we will assume
the PDE is 2D, although the results extend
to higher dimensional problems in an obvious
way. )

The approach applies to an unstructured dis-
crete mesh which is assumed to have been
adaptively chosen by the underlying numeri-
cal method. We also assume that the method
has generated accurate approximations at the
associated mesh points. We introduce inter-
polation schemes to ‘extend’ this discrete ap-
proximation to a continuous approximation.
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For each mesh element, e, we introduce a ‘lo-
cal’ bi-variate interpolant ug4.(z,y) of degree
d that interpolates the ‘local’ mesh data and
attempts to satisfy the underlying PDE.

The underlying method has a piecewise linear
extension associated with e,

With S;(z,y) defined by the collection of ug .(x,y),
we obtain on a ‘refined’ fine mesh,
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A Two Dimensional Example

The PDE is from the ELLPACK collection
Uzg + Uyy = COS(my)u— (1 +sin(nz))us+ f(z,y)
on the domain
0<z<1,0<y<1,
with boundary conditions
u(x,y) = cos(By) + sin B(xz — vy),

where B=m or B = 10.

20



For this PDE defined by B = 10, visualizing
with 8 x8 coarse mesh (Discrete solution only):

V///

e

S g

//// A/
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Visualizing with 8 x 8 coarse mesh and 16 x 16
fine mesh using S3(z,y):
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Approach has been modified and extended in
obvious ways:

e 'Non-local’ solution values can be used if
derivative data not available at meshpoints.

e Has been applied to unstructured triangular
meshes.

e Has been applied to 3D problems.

e Approach can be applied to first-order and
higher-order systems.

e Approach can also be applied to mixed-
order systems.
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The globally accurate piecewise polynomial Sy(z, y)
can be effectively used in many situations:

e T0O generate contour plots or level surfaces.
e [0 locate discontinuities or identify 'fronts’.

e To perform error estimation and/or mesh
refinement.

e To improve heuristics/strategies in the PDE
solver.
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Efficient Generation of Contour Curves.

In most PSEs, contouring a surface in 2D in-
volves rendering the surface over a fine uniform
mesh (associated with the resolution of the dis-
play device) and then using piecewise linear in-
terpolation to contour this rendered surface.

With our approach S;(x,y) can be used to gen-
erate the values over the fine mesh and this can
result in efficient algorithms for displaying the
surface and the associated contours. In the
case that only contours are desired we can use
Sy(x,y) to directly approximate the contours
without the expense of approximating the sur-
face.
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Fast Algorithms for Contouring:

We have developed three algorithms of this
type with different time-complexities and er-
ror behaviour. We will describe one of the
most promising here that applies to the situa-
tion where S;(z,y) is defined over an unstruc-
tured mesh with triangular elements. The al-
gorithm is designed to find the contour curve
corresponding to a value of C. (That is, find
the curve defined by S;(xz,y) = C.)

The ODEA algorithm is based on introduc-
ing ‘arclength’, s, to parametrize the problem,
and defining a simple ODE whose solution is
the vector of coordinates, (x(s),y(s)) of the
contour curve.
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Since S;(x,y)is a bi-variate polynomial, its deriva-
tives Sz(z,y) and Sy(x,y) are easily computed
and by differentiating

Sa(z(s),y(s)) = C,

we see that the contour curve satisfies the
ODE,

Sajxs_l_Sny:O
subject to the ‘arclength’ constraint,
vz +ys =1

The resulting ODE can be approximated over
each element using cubic Hermite interpola-
tion in an efficient way. The resulting algo-
rithm becomes most efficient if high resolution
IS required and the discrete mesh is coarse.

27



Motivation for ODEA:

For each element, whose boundary intercepts
the contour, we approximate the solution of
one or more ODEs. The most likely situation
involving an intersection of a contour curve
and a triangular element:
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The Surface plots and Contour curves for a
simple hyperbolic PDE defined over an un-
structured triangular mesh with 500 mesh points
using a piecewise bi-cubic, S3(z), (PCI)
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The Surface plots and Contour curves for a
simple hyperbolic PDE defined over an un-
structured triangular mesh with 2000 mesh points
using PCI.
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The contour curves for the simple hyperbolic
PDE computed using ODEA and PCI with
an unstructured triangular mesh with 900 and
2500 mesh points.
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Two 3D-PDE Examples:

a)2D Wave Equation: (Vibrating Membrane)

utt — -25(Uzz + uyy) = 0,

domain: 0<¢t<2 0<z<2 0<uyc<?2,
bound cond: u(t,z,y) = 0, and init cond:

u(0,z,y) = 0.1sin(wx)sin(wy/2), u(0,z,y) = 0.

b)2D Heat Equation: (Heated Plate)

domain: 0<¢t<5000, 0<z<4, 0L y<4,
bound cond :

u(t, z,y) = exp(y)cos(z) — exp(z)cos(y),
and init cond: u(0,xz,y) = 0.

In both cases animation requires a 128 x 128 x
128 fine mesh.
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Snapshot at ¢t = 0 Wave egn:

Membrane Displacement: t = 0.000

Membrane Displacement: t = 0.000

(a) Surface Plot (b) Contour Plot

Figure 3 Visualization Using Piecewise Polynomial on 10 x 10 x 10 mesh with 10 x
10 x 10 refinement at ¢t = 0.

Membrane Displacement: t = 0.000

Membrane Displacement: t = 0.000

(a) Surface Plot (b) Contour Plot

Figure 4 Visualization Using Piecewise Polynomial on 20 x 20 x 20 mesh with 5x5x5
refinement at ¢ = 0.
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Snapshot at t = 1.34 Wave eqgn:

Membrane Displacement: t = 1.340

Membrane Displacement: t = 1.340

(a) Surface Plot (b) Contour Plot

Figure 5§ Visualization Using Piecewise Polynomial on 10 x 10 x 10 mesh with 10 x
10 x 10 refinement at ¢ = 1.34.

Membrane Displacement: t = 1.340

Membrane Displacement: t = 1.340

(a) Surface Plot (b) Contour Plot

Figure 6 Visualization Using Piecewise Polynomial on 20 x 20 x 20 mesh with 5 x5 x5
refinement at ¢t = 1.34.
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